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ABSTRACT 
The graph theoretic parameter that has received most attention over the years is the chromatic number and its 

prominence in graph theory is undoubtedly due to its involvement with the four color problem. In this paper the b-

chromatic number of power graphs of complete binary trees and complete k-ary trees are discussed. The semi-strong 

chromatic number of various graphs is also discussed.   
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     INTRODUCTION
Graphs without loops or multiple edges are considered. Let G be a graph with a vertex set V and an edge set E. The 

degree of the vertex x in G is denoted by d(x), and the distance between two vertices x and y in G by distG(x,y). The 

p-th power graph Gp is a graph obtained from G by adding an edge between every pair of vertices at distance p or less, 

with p 1. It is easy to see that G = G. In the literature, power graphs of several classes have been investigated [1, 2, 

3]. A k-coloring of G is defined as a function c on V(G) =v1,v2------,vn into a set of colors C =1,2…..,k such that 

for each vertex vi, with 1  i  n, cvi C. A proper k-coloring is a k-coloring satisfying the condition cx  cy for each 

pair of adjacent vertices x,y  V(G). A dominating proper k-coloring is a proper k-coloring satisfying the following 

property P: for each i, 1    i    k, there exists a vertex xi of color i such that, for each j, with 1    j   i    k, there 

exists a vertex yj of color j adjacent to xi. A set of vertices satisfying the property P is called a dominating system. 

Each vertex of a dominating system is called a dominating vertex. The b-chromatic number of a graph G is defined as 

the maximum k such that G admits a dominating proper k-coloring. The b-chromatic number was introduced in [4]. 

The motivation for achromatic number [5, 6]), comes from algorithmic graph theory. The achromatic number  of a 

graph G is the largest number of colors which can be assigned to the vertices of G such that the coloring is proper and 

every pair of distinct colors appears on an edge. A proper coloring of a graph G using k > (G) colors could be 

improved if the vertices of two color classes could be recolored by a single color so as to obtain a proper coloring. 

The largest number of colors for which such a recoloring strategy is not possible is given by the achromatic number. 

A more versatile form of recoloring strategy would be to allow the vertices of a single color class to be redistributed 

among the colors of the remaining classes, so as to obtain a proper coloring. The semi-strong chromatic number xs(G) 

of a graph G is the minimum order of a partition L of V(G) such that every set S in L has the property: no vertex of G 

has two neighbors in S. The number xs(G) is determined for various known graphs including trees and block graphs, 

and some bounds are obtained for it.    

 

CONCEPTS AND NOTATIONS 
A graph G = (V, E) consists of a set denoted by V and a collection E of unordered pairs of distinct elements of V. 

Each element of V is called a vertex or a point or node. The element of E is called an edge or a line or a link denoted 

as e. The unordered pair {x,y} is an edge in G if and only if  {x,y} = xy  lies in E. The vertices x and y are called 

adjacent vertices if and only if xy is an edge in G. Also x and y are end vertices of an edge in G. If e is an edge in G 

then e is incident with its vertex. A graph G is complete if and only if any two vertices are adjacent.NG (x) is open 

neighborhood of x in G: yV: x, y E}. NG [x] is closed neighborhood of x in G :NG (x){x}. dG(x) is the degree of 

x in G: the number of edges incident with x in G. dG(S) is the degree of S in G : Minimum of the dG(x)  x in S. A walk 

of length k is a finite sequence W = x0, x1, x2…xk of vertices such that any two consecutive elements of W form an 

edge in G. If all edges of W are distinct, then W is called a trail. If x0 = xk then W is a closed walk. A closed trail is 

called a circuit. If the vertices of a walk are distinct then W is a path. If in a walk W = x0, x1, x2…xk, x0 = xk and x1, 

x2, ..xk-1 are all distinct then the walk W is called a cycle of length k or a k-cycle. If x = x0 and y = xk of a walk W = 
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x0, x1, x2…xk   then W is called x-y walk of length k. A graph G is connected if for every pair x,y of vertices there 

exists a x - y path. Otherwise G is disconnected. A tree is an acyclic connected graph .A binary tree is a rooted plane 

tree where each vertex has at most two children. A k-ary tree is a rooted tree where each vertex has at most k children. 

distG(x, y) is the minimum length of a x - y walk. The eccentricity of x, ecc(x), is max {distG(x,y): yV}.The radius 

of G, rad(G), is min{ecc(x): xV}.The diameter of G, diam(G), is  max{ecc(x): xV}.The distance of x, distG(x), is 


Vy

yxd ),( .  

 

Let G = (V, E) be a graph and let S be a subset of V. The induced sub graph < S > of G is the maximal sub graph of 

G with point set S. That is two points of S are adjacent in < S > if and only if they are adjacent in G. A k-coloring of 

G is defined as a function c on V (G) = {x1, x2, x3… xn} to a set C = {1, 2, 3…k} of colors such that for each vertex 

xi, with 1   I   n, we have cxi C. A proper k-coloring of G is a k-coloring satisfying the condition cx cy for each 

pair of adjacent vertices x,y in V. The chromatic number of a graph G, denoted by (G), is the minimum number of 

colors needed to color the vertices of G. A graph G is k-colorable if (G)   k. A stable set or an Independent set in a 

simple graph G is a set of pair wise non-adjacent vertices in G. The independence number α (G) is the maximum size 

of an independent set in G. In fact α (G) = max {| J|: J is a stable set in G}. A graph G = (V, E) is bipartite if V is the 

union of two disjoint independent sets in G and k-partite if V is the union of k disjoint independent sets in G. A set S 

of vertices of G is a dominating set of G if every vertex of G is adjacent to at least one vertex in S. The set of vertices 

having the same color is called the color class. The edge-chromatic number. Graph G is k-chromatic if χ(G) = k. A 

graph G with no isolated vertices is color-critical if and only if χ (G-e) < χ (G) for every e Є E (G). Let S be a collection 

of subsets of a finite set X. The smallest subset Y of X that meets every member of S is called the vertex cover or 

hitting set. A maximal independent set is therefore an independent set containing the largest possible number of 

vertices. 

 

THE POWER OF A GRAPH  
The kth power of a graph G is the graph Gk whose vertex set is the same as that of G and whose edge set consists of 

pairs of vertices (x,y) whenever vertices x and y are distance-k neighbors in G. kth power of graph can also be defined 

as follows: Let G be a graph and k  1, the kth power graph Gk is a graph obtained from G by adding an edge between 

every pair of vertices at a distance p or less. For example, the graph G2 and G3 are referred as the square and cube, 

respectively of graph G.  A graph with its square and cube are shown in figure 1. 

 

Proposition 3.1: for any graph G, G1 = G. 

If two vertices are at a distance 1 then they are already adjacent in G. This proves the proposition. 

 

 
Fig 1: The power graphs of G 

 

 

 

                                                                     G                     G2 

Fig 2: The power graph of complete graph 

 

Some illustrations showing that the square of a graph is a complete graph are shown in figure 2. 

The following illustration in figure 3 shows that the square is not complete where as the cube is complete. 
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Fig 3: Square and cube graphs of G 
 

Proposition 3.2: For any graph G of order n, if diam(G)  p, then Gp is a complete graph. 

 Let diam(G)   p. Then any two vertices are at a distance  p. So, any two vertices of G are adjacent in Gp. Therefore 

Gp is a complete graph. 

 

B-CHROMATIC NUMBER 
The b-chromatic number of G is defined as the maximum number k of colors that can be used to color the vertices of 

G, such that a proper coloring can be obtained and each color i, with 1 ≤ i ≤ k, has at least one representant xi adjacent 

to a vertex of every color j, 1 ≤  j ≠ i ≤ k, the exact value for the b-chromatic number of power graphs of a path is 

given and bounds for the b-chromatic number of power graphs of a cycle are determined. A k-coloring of G is defined 

as a function c on V(G) = {v1,v2,….,vn} into a set of colors C ={1,2,…..,k} such that for each vertex vi, with 1 ≤ i≤ n, 

we have cviC. A proper k-coloring is a k coloring satisfying the condition Cx ≠ Cy for each pair of adjacent vertices 

x,y Є V(G). A dominating proper k-coloring is a proper k-coloring satisfying the following property P: for each i, 1 ≤ 

i ≤ k, there exists a vertex xi of color i such that, for each j, with 1≤ j ≠ i ≤ k, there exists a vertex yj of color j adjacent 

to xi. A set of vertices satisfying the property P is called a dominating system. Each vertex of a dominating system is 

called a dominating vertex. The b-chromatic number j(G) of a graph G is defined as the maximum k such that G admits 

a dominating proper k-coloring. The motivation, similarly as for the previously studied achromatic number comes 

from algorithmic graph theory. The achromatic number y(G) of a graph G is the largest number of colors which can 

be assigned to the vertices of G such that the coloring is proper and every pair of distinct colors appears on an edge. 

A proper coloring of a graph G using k >c(G) colors could be improved if the vertices of two color classes could be 

recolored by a single color so as to obtain a proper coloring. The largest number of colors for which such a recoloring 

strategy is not possible is given by the achromatic number. A more versatile form of recoloring strategy would be to 

allow the vertices of a single color class to be redistributed among the colors of the remaining classes, so as to obtain 

a proper coloring. Table 1 shows the b-chromatic numbers of certain standard graphs. 

 
Graph           

    G 
(G) 

Kp P 

pK  
0 

Kp-x p-1 

Km,n 2 

Pn 2 

C2n 2 

C2n+1 3 

Table 1: b-chromatic number of standard graphs 

 

Proposition 4.1: Assuming that the vertices x1, x2, x3,…, xn of G are ordered such that d(x1) d(x2),….., d(xn) .  

Then (G)  m (G) (G) + 1 where m (G) = {i: 1    i  n, d (xi)  i-1}   

R. W. Irving and D. F. Manlove proved that finding the b-chromatic number of any graph is a NP-hard problem, and 

they gave a polynomial-time algorithm for finding the b-chromatic number of trees. Kouider and Mah´eo gave some 

lower and upper bounds for the b-chromatic number of the cartesian product of two graphs. They gave, in particular, 

a lower bound for the b-chromatic number of the cartesian product of two graphs where each one has a stable 

dominating system. More recently it was characterized bipartite graphs for which the lower bound on the b-chromatic 

number is attained and proved the NP-completeness of the problem to decide whether there is a dominating proper k-

coloring even for connected bipartite graphs and k=(G)+1. They also determine the asymptotic behavior for the b-

chromatic number of random graphs.  

Some of the observations are made as below. 

 

Theorem 4.2: For any graph G, (G)  (G). 

Proof: A proper coloring of a graph G using k> (G), colors could be improved if the vertices of two color classes 

could be re-colored by a single color so as to obtain a proper coloring This form of re-coloring Strategy would be to 

allow the vertices of a single color class to be redistributed among the colors of the remaining classes so as to obtain 

a proper coloring. The largest number of colors for which such a re-coloring strategy is not possible is (G).  Thus 
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(G)  (G). This proves the theorem. The above theorem shows that the results and bounds for the b-chromatic 

numbers are interesting. The following theorem due to Irving et al. (1999) gives the bounds for b-chromatic numbers. 

 

THE POWER GRAPHS OF  BINARY TREES  

Th denotes a complete binary tree of height h and 
p

hT  denotes the pth power graph of Th. 

 
Fig 4: The power graph of complete binary tree 

 

These properties are needed to find the b-chromatic numbers of the power graphs of binary trees and k-ary trees. The 

vertices of Th are denoted by x1,x2,…x2
h+1-1 from level 0 to level h.  we say that a vertex x belongs to the level denoted 

by Lx = dist Th (x1,x).  Let di be the degree of any vertex on level i in
p

hT . 

Lemma 5.1: For 
2

p
 < h< 2p, the order of degrees of 

p

hT  , with p  2 , is given by: 

1. for 
2

p
 < h< p,  d0 = d1 =… dp-h > dp-h+1  dp-h+2 …dh. 

2. for p  h 2p,  dh-p dh-p-1… d1  d0  dh-p+1  dh-p+2 …dh. 

 

Proof: For each v  E(Th), let T(v) be the sub tree of Th rooted on v. Let x and y be two vertices of Th such that Ly = 

Lx +1. From the structure of the tree, we observe that if 
2

p
<h< p, all vertices of levels 0 to p-h are adjacent to all other 

vertices. So, d0 = d1 =… = dp-h. f p  h 2p and Ly  h-p,  then x and y have the same number of neighbours respectively 

T(x) and T(y). More over as Lx > Ly, we observe that the number of remaining neighbours of y is larger than that of 

x. So, dh-p    d h-p-1  …  d1 > d0.In the same way, if Ly  |h-p| +2, we observe that y has less neighbours in T(y) than 

x in T(x). And the number of remaining neighbours of y is less or equal to that of x. So,  

d |h-p|+1 d |h - p| + 2  … dh.  

Finally, dh-p+1 =   




 
ph

j

jphpp

0

)1(1 222  

                         = 
121 222*3   hpp
 

 

As d0 = 2p+1 - 2, we deduce that d0 > dh-p+1. This proves the lemma. The following figure shows the order of degrees of 
pT3  for p = 2 and p = 4. 

 

Fig 5: Order of degree of  
pT3  

Degrees h = 3, p = 

2 

h = 3, p = 4 

d0 6 14 

d1 8 14 

d2 5 10 

d3 3 8 
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Table 2: Degrees of vertices of  
p

hT  

The following lemma proves that there exists a level M in 
p

hT satisfying 2m+1  dm. 

Lemma 5.2: There exists at least one level M in
p

hT , with p2, and 0  M h, such that   2M+1  dM. 

Proof: We give the proof by the method of contradiction. Suppose that 2i+1 < di with 0 i h.  Since there are 2h+1 –1 

vertices in Th, we have di   n-1 = 2h+1 –2. In particular, we have 2h+1 < dh 2h+1 –2, a contradiction. This proves the 

lemma. 

The following lemma gives a lower bound for the level M. 

Lemma 5.3: For 
2

p
 < h< 2p, we have M |h-p|+1 for each p  2. 

Proof: We give the proof by the method of contradiction. Suppose that there exists a level M, with 0 M |h-p|, 

verifying dM 2M+1. There are two cases.  

Case 1: 
2

p
 < h < p. As d0= 2h+1-2, by Lemma 5.1 we have d0=d1=…= d p-h=2h+1-2. More over, as p/2 < h, we have 2p-

h+1  2h. As M  p - h, 2h+1 –2 = dM 2M+1  2p-h+12h. This is a contradiction.  

Case 2: p  h 2p. It is easy to see that for M =0, there is a contradiction (dM = d0 = 2p+1-2 and 2M+1 = 2, with p2). 

As p2, we have d1  d0 + 3. Then Lemma 5.1 shows that dM  d1  2p+1+1, for 1Mh-p. More over as h2p, we 

have 2h-p+12p+1. Then, for each level 1 M h-p, we have, dM   2p+1    2h-p+1 > 2M+1   that is a contradiction. 

Therefore there does not exist a level M, with 0  M  h - p, verifying  dM  2M+1. This proves the lemma. The 

following lemma proves that vertices x1,…xk belong to levels 0…p. 

Lemma 5.4: For 
2

p
 < h  2p and k = max { 2M –1, dM+1}, we have Lxk  p. 

Proof: We prove this by the method of contradiction. Suppose Lxk > p. If  
2

p
   < h < p, it is easy to see that Lxk  h < 

p, a contradiction. For      p   h   2p, we have two cases. Firstly if                 k = 2 M – 1, the vertex xk is the last vertex 

of the level M-1, So Lxk = m-1. As Lxk>p, we have          M  p+2. By its definition, M is the first level verifying dM 

 2M+1. As    M  p+2, we have d p+1 > 2p+2. However h   2p, then h–p + 1  p+1 and lemma 5.1 proves that dp+1  dh-

p+1 < d0 = 2p+1–2, a contradiction. Secondly, k = dM +1. As Lxk > p, then k  2p+1and dM  2p+1 –1. lemma 5.3 proves 

that M h-p+1 and Lemma 5.1shows that dM < d0 = 2p+1-2. then, we deduce that 2p+1-2=d0>dM>2p+1-1, a contradiction. 

This proves the lemma. In the following two lemmas, we give the bounds for degrees of vertices of 
p

hT . 

Lemma 5.5: For 
2

p
 < h  2p and k = max { 2M –1, dM+1}, then for each vertex xi, with   1  i  k we have d(xi)  k-

1. 

Proof: The lemma 5.3 gives M |h-p|+1.  

Case 1: k = dM + 1. Then each vertex xi, 1   i   k, is on a level Lxi  M. More over, Lemma 5.1proves that d|h-p|  d|h-

p| -1 … d0 > d|h-p| + 1   dM = k-1. So d(xi)  k-1, with 1  i  k. 

Case 2: k= 2M –1.Here Lxk = M-1 and lemma5.4 shows that Lxk p, so M  p+1. If M = |h-p| + 1, then we have two 

cases. First if 
2

p
 < h < p, Lemma 5.1shows that d0 = d1= …= dM-1 = 2h+1 .As M  h, we have di 2h+1 –2   2M+1–2 > 

k. Second if p  h  2p, Lemma 5.1shows that min{ di : 0 iM-1}=d0=2p+1–2.As Mp+1, we have di  2p+1 –2  2M 

- 2 = k-1. Finally, if M > |h-p| +1, Lemma 5.1proves that min{di: 0 i M-1 }= dM-1. As M is the first level verifying 

dM  2M+1, we have dM-1> 2M. So d(xi)  k-1, with 1 i k. This proves the lemma. 

Lemma 5.6: For 
2

p
 < h  2p and k = max { 2M –1, dM+1}, then for each vertex xi, with k+1 i 2h+1 –1 we have d(xi) 

 k-1. 

Proof: lemma 5.3 proves that M  |h-p| + 1. If k = dM+1, then dM < k and Lemma 5.1shows that max {di M  I h} = 

dM < k. If k= 2M –1, then k  dM+1. So dM <k and lemma 5.1 gives max {di: Mih} = dM < k.  This proves the lemma. 
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The following lemma shows that if a graph G has dominating proper k-coloring, then all added vertices with degree 

less than k can be colored the keep a proper k-coloring of G. 

Lemma 5.7: Let G be an induced sub graph of G by V V. If G admits a dominating proper k- coloring and each 

vertex of G\G has a degree in G less than k, then G admits a dominating proper k-coloring with the same dominating 

system. 

 

Proof: Let x be a vertex of G/G with degree d(x). Let A be the set of adjacent colors to x in G. If V = V (that is V 

(G/G ) =) then the results holds. Otherwise, as |A|  d(x) < k, then there is at least one color c not adjacent to x, 

belonging to {1,2,…,k}. Then we put cx = c. Let now G be an induced sub graph given by V {x}. The graph G  

verifies the hypothesis of Lemma. So, we repeat this process for each vertex of G/G until V=V. 

 

B-CHROMATIC NUMBER OF K-ARY TREES 
Kouider and etal gave some lower and upper bounds for the b-chromatic number of Cartesian product of two graphs.  

They gave, in particulars, a lower bound for the b-chromatic number of Cartesian product of two graphs where each 

one has a stable dominating system.  More recently Brice Effantin and Hamamache Kheddouci characterized bipartite 

graphs for which the lowerbound on the b-chromatic number is attained and proved the NP- completeness of the 

problem to decide whether there is a dominating proper k-coloring ever for connected bipartite graphs and k = (G) 

+ 1.  They also determine the asymptotic behavior for the b-chromatic number of random graphs. The following 

theorem finds the b-chromatic number of power graphs of complete binary trees. 

 

Theorem 6.1: Let Th be a complete binary tree of height h. The b-chromatic number of
p

hT , with p  2, is: 

(
p

hT )= 

12

42

)2

1)12(3

}1,12max{

12 1





















ph

php

ph

if

if

if

d
p

M

M

h

 

where M is the first level verifying 2M+1  dM.  

Proof: Let p = 1. Then for h = 1, 2 and 3       (
p

hT ) = h + 1. Otherwise (
p

hT ) = 4. 

So we assume that p  2. 

Result (a): (
p

hT ) = 2h+1 –1 if h   p/2 

Suppose h   
2

p
.  One can see that the graph 

p

hT , with p  2, is a complete graph. Therefore, for any graph G of 

order n,if diam(G)  p then  (G) = n with  p  2, (
p

hT ) = 2h+1 –1. 

Result (b): (
p

hT ) = max { 2M –1, dM+1} if  
2

p
 < h  2p. 

Firstly we prove that (
p

hT )  max {2M –1, dM+1}. Lemma5.2 proves that there exists a level M verifying 2M+1  dM. 

Let k= max {2M –1, dM+1}. We give a proper k-coloring for  
p

hT  in three steps. 

Step1: We color the k first vertices with k different colors as in the following figure. 

 
Fig 6: Coloring of complete tree 
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Step 2: For each m=1, 2, 3,.., k, we  color some  neighbors  of xm to become it a dominating vertex. Let Nl(xm) be the 

set of  neighbors of xm on level l, with 0  l  h. For each color j, with 1  j  cxm  k and xm is not adjacent to j, we 

put j on a non colored neighbor of xm such that a vertex of Nl+1(xm) will be colored if all vertices on Nl(xm) are colored, 

with    0  l  h -1 and 1  m  k .  

 
Fig 7: Coloring of complete tree 

 

Now X be the set of vertices {x1,x2,x3,…,xk}. Next we prove by induction on m that the coloring given by step 2 from 

x1 to xm is proper, with 1  m  k. lemma5.4proves that Lxk  p. Then xi is adjacent to each vertex of X and by 

construction all vertices of X have different colors. So, for m = 1, the induction hypothesis is verified. Suppose that 

the coloring given by step2 is proper for x1 to xm, with 1  m < k. Then we prove this hypothesis for m + 1. Let v be 

a non colored neighbor of xm+1 on
p

hT . Let y be colored vertex on 
p

hT  such that (v,y) E(
p

hT ). We denote by P[v,y] 

the path with end vertices v and y in Th. By applying Step2 for xm+1, we color v and we prove that cv  cy by 

construction. Suppose cv = cy .By construction, as y is already colored, Ly  Lv. Moreover we have (y,xm+1) E(
p

hT ) 

since cv=cy and by construction of Step2, each vertex is not adjacent to the same color. Let T  the sub tree rooted on 

xm+1. If {v,y}  T , as Ly Lv and (v,xm+1) E(
p

hT ) then (y,xm+1) E(
p

hT ), a contradiction. If only v  T  ,(or only 

y  T ) , then xm+1 P[v,y] since xm+1 is the root of T .  As (v,y)  E(
p

hT ), we deduce (y, xm+1)  E(
p

hT ),, a 

contradiction. If {v,y} T , let Ta be the sub tree rooted on xa=max {xi:1im} and {v,xm+1} Ta. If yTa, as Ly  

Lv and (v,xm+1), let Tb be the sub tree rooted on xb such that xb= max {xi : 1im} and {y,xm+1} Tb. One can note 

that Lxb <Lxa. Then, distTh(xm+1,y) = distTh(xm+1,xa) + distTh(xa, xb) + distTh(xb,y) ………(1) More over as (v,y)  E(
p

hT ), distTh(v,y) = distTh(v,xa) + distTh(xa, xb) + distTh(xb,y) p ….………(2) By constructuion  Lxm+1 Lv, so 

distTh(xm+1,xa)  distTh(v,xa).Then from (1) and (2) we deduce that distTh(xm+1,y)  distTh(v,y) p which is a 

contradiction since (xm+1, y) E(
p

hT ). Thus the coloring by Step 2 for xm with 1 m  k is proper.  

Step 3: By lemma5.5, each vertex xi, with k+1 i 2h+1 – 1, verifies d(xi) < k. Thus lemma5.6 allows us to extend the 

coloring given by Step 1 and Step 2 to the remaining vertices to have a proper coloring. 

 
Fig 8: Coloring of complete tree 

Now the three steps show that the coloring is proper. Lemma5.5 proves that each vertex xi, with 1 i  k, verifies d(xi) 

 k-1. Moreover by applying Step 2, each vertex xm, with 1 m k, is adjacent to each color j, 1  j  cm  k. Thus this 

coloring is a dominating proper k-coloring where the dominating system is X. This proves that  (
p

hT )   max{ 2M –
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1, dM+1}.Next  we prove that  (
p

hT )   max{2M –1, dM + 1}. The proof is by contradiction. Suppose that there exists 

a dominating proper k -coloring such that k  > max {2M –1, dM+1}. There are two cases. 

 

Case 1: 2M –1 dM + 1. 

Then by lemma 5.3, k  2M 2|h-p|+1. There is at least one dominating vertex x on level Lx such that M Lx h. To be 

dominating vertex, x must have a degree greater than k - 1. As Lemma 5.1proves that max {dM,dM+1,…, dh} = dM, we 

have dM  dLx  k -1, DM + 1  k   2M. that is a contradiction. 

 

Case 2:  dM+1 > 2M –1. 

Then k   dM  2M + 1. Then, there is at least one dominating vertex x on level Lx, with M  Lx  h . On level M, a 

vertex can be adjacent to at most dM vertices. So no vertex of level M can be a dominating vertex. Moreover, by 

Lemma 5.1and lemma5.3 we have d|h-p|+1   d|h-p|+2 …,   dh. So, no level i, with M< I  h, has a vertex with degree 

more or equal than k -1, a contradiction. So, we have (
p

hT )   max { 2M –1, dM+1}.We deduce from the above 

discussion,  (
p

hT ) =  max{ 2M –1, dM+1}. 

Result (c): (
p

hT ) = (
p

hT ) +1 = 3(2p-1) +1 if h 2p+1. Let k= (
p

hT ) +1= 3(2p-1) +1. The Proposition 4.1 shows 

that (
p

hT )  (
p

hT ) +1.  Let X1 = {x: = 2p+1 +j; j=0 to 2p-1}.  X2 = {x:  = 2p+1+j ; j=2p to 2p+1-1}.Let X3 be the 

set of the  k-2p+1= 2p-3 first vertices of level p. Let X = X1  X2 X3.We prove by construction that (
p

hT )  (
p

hT

) +1. Firstly, we put k different colors on each vertex of X.  

 
Fig 9 : coloring after first step 

 

Secondly, we color vertices of levels 0 to p. Let V1 (resp. V2) be the set of non colored vertices of levels 1,2,…,p in 

the left(resp.right) sub tree of Th. Let Cx1 and Cx2 be the sets of colors of respectively X1 and X2. On each vertex of V1 

(resp.V2), we put a not used color of Cx2(resp.Cx1). Since |Cx1| = |Cx2| = 2p and |V1| |V2| 2p-1, then each vertex of V1 

V2 has a different color as others and it remains at least one color not used in Cx2. So we put this color on x1. 

 
Fig 10: Coloring after second step 

 

Thirdly, to color the remaining vertices we use the same coloring as in the second step of the Result (b). For each 

vertex x of X3, we put each color j, with 1 j Cx  k and x is not adjacent to j, on each non colored vertex x , where 

x  = min{xi: 1  I  2h+1 –1} and (x, x )  E(
p

hT ),We start again this third step for each vertex of X1 and X2.  Finally, 

if some vertices of Th are not colored, we start again this step for each vertex of levels p + 2 to h - p. 
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               Fig 11: Coloring after third step 

By construction, two neighbors will not have the same color. Moreover, as d(x) = (
p

hT ) for each vertex of levels p 

to h-p, all vertices of levels h-p+1 to h are colored. Therefore we obtain a dominating proper k-coloring where X is 

the dominating system. This proves that (
p

hT )  (
p

hT ) +1.  Therefore we deduce that (
p

hT ) = (
p

hT ) +1 = 3(2p-

1) +1.  This proves the theorem. In the following theorem we find the b-chromatic number of power graph of complete 

k-ary trees. 

 

Theorem 6.2: Let Th be a complete k-ary tree of height h. The b-chromatic number of
p

hT , with p  2, is: 

(
p

hT )= 

12
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where M is the first level verifying 
1

11





k

k p dM 

Proof: We extend different algorithms of Theorem 6.2 to the power complete k-ary tree. Indeed,  if h  
2

p , we have 

a complete graph and Theorem 4.3 shows that  ( p

hT )=
1

11





k

k p
. For the second result p < 2h  4p, we can find a level 

M  verifying 
1

11





k

k M dM, and with the same construction as   for a complete binary tree, we can color a power complete 

k-ary tree, with (
p

hT )=
}1,

1

1
max{ 




M

M

d
k

k  colors.  For the third result, a simple modification is needed since for a 

complete k-ary tree, with k  3, there are more than 2 sub trees of Th rooted in level 1. Moreover, there are more than 

(
p

hT ) vertices on level p +1, then there are no dominating vertices on the level p. However, we can prove that the 

number n  of vertices from level 0 to p is less than (
p

hT )+1. We have n   = 



p

i

ik
0

 = 
1

1

1






k

kk p . 

As (
p

hT )+1=
2
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)1(1
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k

kkkk

k

kk ppp

, the construction given for the third result can be done.  

 

SEMI- STRONG CHROMATIC NUMBERS  
The ‘semi-strong chromatic number’ xs(G) of a graph G is the minimum order of a partition L of V (G) such that every 

set S in L has the property : no vertex of G has two neighbors in S.  The number Xs (G) is determined for various 

known graphs including trees and block graphs, and some bounds are obtained for it.  Also graphs G for which xs, (G) 

= I v(G) I are characterized and an open problem is stated. Let G = (V, E) be a graph.  For uV, let N (u) = {v V: 

UVE} and N [u] = N (u) U {u}.  According to Berge1 (p.448), a set S  V is ‘strongly stable if I N [u] ∩ SI ≤ 1 for 

all u V.  Following this definition, we call S ‘semi-strongly stable (s-strongly stable)’ if I N (u) ∩ S I ≤ 1 for all uV.  

Clearly, S is s-strongly stable if and only if S contains no two neighbors of a vertex.  Note that a strongly stable set is 
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independent, but an s-strongly stable set need not be so.  In fact, if S is s-strongly stable, every component in the sub 

graph  S  induced by S is either K1 or K2s.Some elementary observations. 

 

Proposition 7.1: 

(1) s(Kp) = p, p ≠ 2, s (Km,n) = n, m < n. 

(2) For the cycle Cn or n vertices,  

s(Cn) =    2 if n= 0 mod 4 

      3 otherwise 

 

(3) For the path Pn on n vertices,  

s(Pn) =    









3  n if 2

2  n if 1   

(4) For the wheel Wn on n vertices, s   (Wn ) = n 

 

Proposition 7.2: If   (G) is the maximum degree of a graph G, then, G   s   (G).  (1) With equality for trees 

(≠K1). 

 

Proof:Let  be a vertex of G with deg  = .In any s-coloring of G, the  neighbours of  must be given different 

colors.  Hence (1) follows. Suppose now G is a tree.  We can s-color any vertex of G and extend to an s-coloring of 

all of G with  colors: Assume XV (G) is s-colored. Let V (G)-X such that uN (v) for some vN. Since v is the 

only neighbour of u in X, there are -1 distinct colors different from that of v available for  N(u)–v.Assign a color not 

used in  N(v) – u  to  u.We now have an s-coloring of  X U  N[u]  and can continue by induction.  Hence s   (G) ≤   

and equality holds in (1). This completes the proof of the proposition. We observe that for graph G, s   (G) = 2 if and 

only if every component of G is either a path Pn, n ≥3, or a cycle Cn, n = 0   mod 4.  This follows from Propositions 

7.1 and Propositions 7.2 Note that it is possible for s     to be arbitrarily larger than.  We establish this fact in the 

sequel. 

 

Proposition 7.3: if (G) is the chromatic number of a connected graph G, then, (G)   s   (G) if G  s   K2.    

 

Proof: It is well known that (G)   + 1.  Thus from (1).(G) -1      (G)    s  (G).If (G) -1      (G), then, by 

Books theorem, G is either complete or an odd cycle. In both cases,  s(G) =    (G)  + 1 by Proposition 7.1. If (G) 

-1      (G), then,   (G) -1      (G)    s  (G). This completes the proof. Note that the result is not true when   G = 

K2, since   (K2) = 2. We now obtain tight bounds for two classes of graphs. 

 

Proposition 7.4: If G is a block graph or a cactus, then, semi – strong chromatic number of a graph  

  2   (G)   + 1.  (2) 

 

Proof: In view of (1), it suffices to establish the upper bound.  We do this by describing an s-coloring of G with   + 

1 colors.  Let G be a block graph.  If G exactly one block, then G is complete, and (G) =  + 1 if G   K2.   if G    K2,   

then,  s  (G)  = .   Suppose G has more than one block.      Let v be a cut vertex with deg v =.  First color v and 

its neighbors differently with  + 1 color.   Next, consider a cut vertex u adjacent to v in a block B.   All the neighbors 

of u in B being already colored, color the other neighbors of u differently with colors not used in coloring the vertices 

of B. This is possible since there are +1 colors and deg u ≤ .Continuing this process, we can color the entire graph 

G with  + 1 colors.  In the above coloring we observe that any two vertices adjacent to a given vertex are colored 

differently, and thus this is an  s- coloring  of G with  + 1 colors. Now let G be a cactus.  We prove 2 (G)     + 

1 by induction on the number n of blocks in G.  If n=1, the result is true since G is either K2 or a cycle.  Suppose n > 

1, and the result is true for all cacti with n blocks.  Let G be a cactus with n +1 blocks and let B be an end block of G 

with cut vertex v.  Remove the vertices of B except v from G resulting in a cactus F. With n blocks.  By hypothesis, F 

can be s-colored with (F) + 1 (and hence with (G) +1) colors.  Consider such a coloring of F with (G) +1 color.  

If B is a cycle, then degF v + 2 = degG v  ≤ . Therefore, out of (G) +1  colors, at most (G) -1  colors have been 

used to color v and its neighbors in F  Using the remaining two colors, and the color of v, the cycle  B  can be colored 

such that no two neighbours of a vertex are colored the same. This gives an S – coloring of G with (G) +1colors.If 

B =  K2 , a similar argument holds. This completes the proof. We now characterize block graphs for which the upper 

and lower bounds in (2) are attained. 
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Proposition 7.5: If G is a block graph, then 2 (G)     + 1 if and only if there exists a vertex of maximum degree 

which does not belong to a K2   - block. 

 

Proof: Let deg v =   in G. We observe that f no block at v is K2, the vertex in N[v] must be assigned distinct colors 

in any s-coloring of G.  This implies 2 (G)     + 1, and hence by (2), 2 (G)     + 1.  Conversely, suppose at 

every vertex of maximum degree in G, K2   is a block.  We now describe an s-coloring of G with   colors, and then 

by (2), this implies 2 (G) =.  Let deg v =, and let uv  be a block K2   at v.  First color v and its neighbours with  

colors giving the same color to v and u, and different colors to all other neighbours of v.  Next, let v1 be a cut vertex 

adjacent to v.  If deg v1=, there exists a block  K2  at v1,  and an  s-coloring  of v1 and its neighbours with  colors 

as above.  If deg v1< , the vertices in  N[v]  can be colored differently using at most  colors,  which turns out to 

be an s-coloring  of v1 and its neighbours.  Continuing this process, we have an s-coloring   of G with  colors.  This 

implies 2 (G)    , and by (2), 2 (G) =.  This completes the proof. 

We note that the lower bound in (2) is attained for a cactus C when C = Cn,  n=0 mod 4.  The upper bound is attained 

for a cactus C when C = Cn, n=0 mod 4.  Also, one can rove that if no vertex v of the cactus G with v =  belongs to 

a K3, then at 2 (G) =. 

 

Proposition 7.6: If G a K3, - free graph of order p, and has no isolated vertices then,  

2 (G) ≤ 1. 

 

Proof: Let ui vi  , 1 ≤  i ≤ 1 be the edges of matching in G, and  Fi,  = { ui vi }. 

Then, {  F1,  F2, …., F1  }   together with  p  -  21 singleton subsets of  
1

1

)(





i

iFGV  from  an  s- partition of  G,  

since  G  is   K3 –free. Hence   2 (G)  ≤( p  -  21 ) + 1 =      p  -  21 = 1 . 

Proposition 7.7: Let G be a K3 –free graph of order p with a 1-factor.  Then, 2 (G) ≤
2

p
.  

Proof: By Proposition 7.6, we have 2 (G) ≤ 1 = p - 1 =

2

p
. 

Proposition 7.8: Let G be a graph of order p with diameter 2.  Then,   2 (G) ≥ [
2

p
]. 

Proof: Let {V1, V2,….,Vk}be an s-partition of G. Then, any two vertices u and v in any,   Vi, 1 ≤ i ≤ k should be 

adjacent.  For otherwise, since diameter of G is 2, there exists a vertex w adjacent to both u and v, which is not true.  

Since any vertex in Vi can have at most one of its neighbors in Vi, each sub graph  Vi  is either K1 or K2, and the 

result follows. From Proposition 7.7 and Proposition 7.8, we can deduce the following proposition. 

Proposition7.9: If G is a K3-free graph of order P with diameter 2 and a 1-factor, then s (G) =
2

p
. 

Proof: There exist several graphs satisfying the conditions of Proposition 7.7 For example, let G be the graph obtained 

from C8 by joining every pair of vertices Vi and Vj with d(vi, vj) -= 4.  Also, let H be the graph obtained from C10 by 

joining every pair of vertices vi and vi with d(vi, vj) = 3 or 5.  Then, both G and H are K3-free, have diameter 2 and a 

1-factor.  For both these graphs as well as for the Petersen graph s =
2

p
, by Proposition 7.7 We now characterize 

graphs G for which s (G) = | V (G) |.Let Y(G) and d(G) respectively denote the domination number and the diameter 

of a graph G.  

The following proposition is due to Brigham and Dutton. 

 

Proposition 7.10: The following are equivalent for graphs G on p ≥ 3 vertices: 

(1)  N(G) = Kp 

(2)  d(G) ≤ 2 and every edge of G is on a triangle. 

(3)  y(G) ≥ 3, where G is the complement of G. 

 

Proposition 7.11: The following are equivalent for graphs G on p ≥ 3 vertices:  
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(a) s (G) = p. 

(b) d(G) ≤ 2 and every edge of G is on a triangle. 

(c)  y (G) ≥ 3. 

 

Proof: (a)   (b). s  (G) -= p   (N(G)) = p   N(G) = Kp and this implies (b) by Proposition 7.10. (b)  (c) and 

(c)  (a) by Proposition 7.10.  This completes the proof. 

Several graphs exist for which Proposition 7.11 holds.  For example, in C2n-1 where n is odd, join all pairs of distinct 

vertices vi and vj if d(vi,vj) ≤ 
2

)1( n
.  Let G be the graph thus obtained.  Similarly, let H be the graph obtained from 

C2n (n even) by joining all pairs of distinct vertices vi and vj if d(vi,vj) ≤ 
2

n
.  Then, s (G) = 2n-1, and s (H) = 2n.Let 

(G) denote the order of a maximum clique in G.  The following result provides a sufficient condition for s (G) = s 

(G).The next proposition is due to Brigham and Dutton. 

 

Proposition 7.12: Let G be a graph of order at least three.  Then, any two of the following properties implies the third. 

(1) N(G) = G 

(2)  (G) = 2 

(3)  d(G) = 2. 

 

Proposition 7.13: Let G be a K3 – free graph with diameter two. Then, s (G) = s (G). 

 

Proof: This follows from Proposition 7.12 since the given conditions imply N(G) = G.Clearly, the sub graph induced 

by the union of any two sets in a  (G)-partition of G is bipartite.  This is also true for any s(G)–partition of G. This 

completes the proof. 

 

Proposition 7.14: Let L = { V1, V2,…. Vk} be a s (G) – partition of G.  The sub graph Hij=  Vi U Vj   of G is bipartite 

for all i and j. 

 

Proof: Each component in the sub graphs Hi +  Vi  is either K1 or K2. Also, each vertex in Vi has at most one 

neighbour in Vj and vice versa.  Hence, the degree of any vertex in Hij is at most two.  Suppose the sub graph  Hij 

contains a cycle.  Since a vertex of degree zero in Hi or Hj has degree at most one in Hij, the vertices o the cycle have 

degree one in Hi or Hj.  Hence, the edges of the cycle are the edges in Hi or Hj, or edges from Vi to Vj.  Thus, if 

e1,e2….,en are the edges of the cycle, and e1  Hi, say, then, e2 is an edge from Vi to Vj e3   Hj, e4 is an edge from Vj 

to Vi etc.  This implies n = o mod 4, and proves that every component in Hij is either a path or a cycle Cn, n= o mod 4. 

Hij is bipartite. 
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